
INVESTIGATING THE IMPACT OF POINT CLOUD DENSITY ON SEMANTIC
SEGMENTATION PERFORMANCE USING VIRTUAL LIDAR IN BOREAL FOREST

Olivier Stocker1, Reza Mahmoudi Kouhi1, Eric Guilbert1, Antonio Ferraz2, Thierry Badard1
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ABSTRACT

Virtual LiDAR Scan (VLS) serves as a powerful tool for
the replication of real world conditions and can assist with
the calibration of LiDAR systems. In this study, we utilize
HELIOS++, a VLS software, to investigate the impact of
point cloud density on the semantic segmentation perfor-
mance of a well-established Deep Learning (DL) method
for point clouds, KPConv. Our experiment is focused on a
typical Quebec boreal forest composed of Abies balsamea
and Picea mariana. We generated 10250 structurally diverse
forest plots to train 10 DL models on a wide range point
cloud densities to assess their effect on the semantic segmen-
tation. Densities varied from 23 points/m2 to 225 points/m2,
replicating point clouds output from classic airborne LiDAR
scanning and high-density unmanned LiDAR scanning. Our
results demonstrate that point cloud densification improves
IoU score for both boreal tree species by an average of 0.3
percentage points per 10 points/m2.

Index Terms— Boreal Forest, Simulation, LiDAR, Com-
puter Vision, Deep Learning

1. INTRODUCTION

Boreal forests are fragile ecosystems that have undergone sig-
nificant changes in recent decades due climate change, fires,
illness, and anthropogenic activity. To better understand these
changes and to create improved preservation regulations, ac-
tive monitoring has been set up across these forest regions
[1].

Airborne LiDAR Scanning (ALS) is a commonly used ac-
quisition tool for monitoring forest ecosystems due to its abil-
ity to provide valuable geometric and radiometric information
[2]. Yet, the data often require postprocessing before they can
be used. Studies have shown the benefits of machine learning,
or more specifically Deep Learning (DL), for the automation
this step [3].

However, DL algorithms are data-driven and rely on very
large amounts of manually labeled data to be efficient. Fur-
thermore, forest environments present complex and irregu-
lar shapes, making manual labeling of 3D point clouds espe-
cially difficult. As a result, there is a shortage of open-access

point cloud datasets focused on forest environments designed
specifically for model training [4].

To solve this constraint, one of the proposed approaches
is using Virtual LiDAR Scan (VLS): by modeling a 3D scene
and using ray tracing technology, it is possible to simulate a
complete LiDAR acquisition with its ground truth, regardless
of the platform. Although studies using VLS for forest envi-
ronments have mostly focused on radiometric sensor calibra-
tion [5] or validating models to extract vegetation attributes
from LiDAR waveforms [6], to our knowledge, no studies
have used VLS in order to evaluate the impact of the sensor
calibration on semantic segmentation quality.

This paper introduces a complete VLS workflow, from
forest modeling to DL testing, to assess the impact of point
cloud density on semantic segmentation quality. We provide
a comparison of model performance trained from an average
point density of 23 points/m2 to 225 points/m2, allowing our
evaluation to cover a wide range of calibration, from classic
ALS to high-density Unmanned LiDAR Scanning (ULS).

2. RELATED WORKS

Since the development of LiDAR technology, there has been
an increased focus in simulating the interaction of light beams
with the environment. The state-of-the-art in LiDAR simu-
lation for airborne platforms is currently held by the DART
model [7] and HELIOS++ [8]. The former is an implemen-
tation of a Monte Carlo ray tracing method with optimized
computation time while the latter is a non-stochastic method
in which LiDAR pulses are simulated thanks to a fixed num-
ber of rays. The DART model is able to produce high-quality
simulations in regards to the spectral attributes of the point
clouds. On the other hand, HELIOS++ chooses to trade off
realism for computational efficiency.

The quality of a LiDAR simulation not only depends on
the simulation method, it also depends on the quality of the
reconstructed scene. Terrestrial LiDAR Scanning (TLS) is a
common remote sensing method for tree reconstruction [9,
10]. [9] proposed an algorithm to reconstruct trees from TLS
and extended their work to create a complete tree model li-
brary from a few reconstructed trees [11].



The impact of point cloud densities has been studied on
forest biomes for ground extraction [12], tree attributes [13],
and various structural indices like Canopy Closure or Leaf
Area Index (LAI) [14]. However, computer vision studies
have only focused on single tree segmentation using unsu-
pervised machine learning K-means algorithm [15]. Due to
the lack of labeled datasets, semantic segmentation tasks with
DL algorithms, have not received much consideration.

Simulated datasets for DL training have been frequently
used, as they provide an affordable alternative to real datasets
while maintaining a high level of informativity. Although
most of the open-access datasets are focused on anthropo-
logical scenes, like urban areas for autonomous driving [16],
some works focus on forests, such as [17], which have used
RGB images. However, to the best of our knowledge, none
of these studies have aimed to simulate point clouds with the
intent of training DL algorithms.

3. METHODOLOGY

Our methodology is composed of three phases, (1) forest plot
modeling, (2) LiDAR simulations, and (3) DL training and
testing.

3.1. Forest Plot Modeling

The objective of this first phase is to produce a series of mod-
els representing plots of boreal forests. The boreal forest in
Quebec is typically composed of two species: Picea mariana
(black spruce) and Abies balsamea (balsam fir), with stands
density ranging between 1000 and 3000 stem/ha [18].

Modeling a plot is performed by placing existing models
of tree on a 25x25 m2 Digital Elevation Model (DEM). The
plot models need to represent the diversity in size and struc-
ture that can be observed in reality. However, reproducing
real-life examples is not necessarily the optimal choice to ef-
ficiently train a DL network because they can be repetitive and
lack of challenging structures [19]. In fact, training is usually
more efficient if all possible situations are equally represented
in our samples. Therefore, parameters describing the trees
and forest structures are not chosen to build realistic plots but
rather plots where all cases are uniformly distributed.

We used TLS-reconstructed tree models from the library
of [11] (Figure 1). Because a complete tree model can ex-
ceed 56 GB, we simplified each trunk model by edge collapse,
removing every branch less than 5 cm in diameter. Further-
more, we simplified sprouts to simple 3D boxes, while keep-
ing the same surface in each direction, in order to preserve
light transmittance and LAI characteristics. In total, 328 tree
models were used, 227 for Abies balsamea, and 101 for Picea
mariana.

For ground modeling, we extracted ground points from a
1 km² ALS acquisition of Quebec forest where topography
shows a great diversity of slope. Ground points were then

Fig. 1. Examples of Abies balsamea (left) and Picea mariana
(right) models from [11]. Colors for visualization only.

converted to a raster DEM from which we randomly select a
25x25 m² subsample per plot.

In order to populate plots with the desired number of trees,
we generated heights, diameters at breast height, and LAIs
from random uniform distributions. We then selected the tree
model from the library that best fit with these characteristics.
We chose to assign each tree a random position on the terrain
without consideration of factors such as light competition or
slope. Finally, a random rotation along the vertical axis was
applied to each tree.

3.2. LiDAR Simulation

In the second phase, we carried out LiDAR simulations with
HELIOS++ [8] on each plot. For each plot, the simulated
flight path was divided into 10 legs, 5 traveling from south to
north, and 5 west to east. Legs 1,5,6 and 10 were at swath
limits, legs 3 and 8 were at nadir, and legs 2,4,7,9 were in
between. The 10250 simulations were computed on high-
performance computing servers with nodes of 128 GB of
RAM and 32 cores. The output of the simulation was a set of
10 point clouds per plot, one per leg.

3.3. Deep Learning

With the intent of emulating different levels of point density,
we created 10 sets from a combination of previously simu-
lated legs. We replicate similar overlapping conditions as
regular airborne acquisitions. Table 1 present the resulting
average point density for each of the sets.

We randomly split the 10250 plots into training, valida-
tion, and test groups containing 70%, 10% and 20% of the
plots, respectively. This split was kept the same for all sets.
The class labels were derived from HELIOS++ hit object out-
put. Since no correct radiometric characteristics of foliage
and wood material were provided for the simulation step, in-
tensity values were not reliable and were not used as input.



Set 1 2 3 4 5 6 7 8 9 10
Average point density (points/m2) 23 45 67 89 112 135 158 179 202 225

All plots IoU
Abies balsamea 90.5 91.3 91.7 92.5 92.6 92.7 93.1 93.8 94.5 94.6
Picea mariana 81.9 83.3 85.8 86.5 86.2 86.9 86.8 88.5 90.1 90.3

mIoU 86.2 87.3 88.8 89.5 89.4 89.8 89.9 91.2 92.3 92.5
High Tree Density plots IoU

Abies balsamea 87.0 87.4 88.5 88.7 88.6 89.6 89.7 90.4 91.6 91.4
Picea mariana 78.2 78.6 82.5 81.4 80.7 83.0 82.6 83.9 86.4 86.1

mIoU 82.6 83.0 85.5 85.1 84.7 86.3 86.1 87.1 89.0 88.8

Table 1. Average point density per set, and semantic segmentation scores (IoU and mIoU) of models trained on respective set,
averaged for all plots and for plots with the highest tree density.

Therefore, only x, y, and z coordinates are considered as in-
put features.

As our focus was on geometric features, we selected KP-
Conv network [20] for the point clouds semantic segmenta-
tion. We trained one network for each density set, resulting
in 10 models. Every model went through the same training
procedure : 140 epochs, each of 300 steps.

4. RESULTS AND ANALYSIS

We calculated IoU scores on the test split for each of the
10 KPConv models and presented them in Table 1. It also
provides IoU score for plots with high tree density (3100
stem/ha). A 3D viewer of models and semantic segmentation
results is available at polarsensing.net/igarss2023. Ground

(a) (b)

Fig. 2. (a) Linear regression of mIoU on tree classes for high
tree density plots (blue) and all plots (red), (b) Linear regres-
sion of IoU for Abies balsamea (green) and Picea mariana
(black green) for all plots.

IoU scores were exceptionally high across all point density
experiments (99% IoU). We explain this score by the fact
that low and medium vegetation were not integrated in our
models. Due to this high score, we computed a mIoU without
the ground class to better underline the performance of the
semantic segmentation of the tree classes.

Figure 2(a) shows the strong linear correlation between
point cloud density and the mIoU score for all plots and High
Tree Density (HTD) plots (i.e., r2 of 0.93 and 0.9 for, respec-

tively). Regardless of the tree density, this regression demon-
strates an average of 0.3 point of percentage improvement
for tree classes per 10 points/m2 density increment (All: 0.3,
HTD: 0.28). Picea mariana class benefits more from point
cloud densification, with a 0.37 point mIoU per 10 points/m2

(r2=0.91), in contrast to Abies balsamea with a 0.19 point
mIoU per 10 points/m2 (r2=0.97). This phenomenon can be
linked to the average LAI of both species, as fewer leaves
means fewer LiDAR returns. In fact, we can see from the
model library that Picea mariana trees have a lower LAI than
Abies balsamea trees (69.1 and 147.8, respectively) if filtered
by a diameter at breast height superior to 0.2 m.

5. CONCLUSION

In this paper we proposed a full Virtual LiDAR Scan (VLS)
workflow to investigate the effects of point cloud density on
the semantic segmentation segmentation of tree species in bo-
real forest. We show that increasing the point cloud density
improves the IoU score of tree species at an average of 0.3
point per 10 points/m2.

Our next steps will first focus on improving the modeling
of forest plots by (1) complexifying the forest vertical struc-
ture with the addition of low and medium vegetation, and (2)
extending the model library to newer tree species. Then, we
will concentrate on giving more insight about the use of VLS
for other computer vision tasks like individual tree segmenta-
tion and panoptic segmentation.
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